Channel network structure determines genetic connectivity of landward–seaward Avicennia marina populations in a tropical bay


  • Abbie Allela Egerton University


Avicennia marina ▪ Gene flow ▪ Microsatellite▪ Fine-scale-spatial genetic structure ▪ Gazi bay


Mangrove ecosystems along the East African coast are often characterized by a disjunct zonation pattern of seaward and landward Avicennia marina trees. This disjunct zonation may be maintained through different positions in the tidal frame, yielding different dispersal settings. The spatial configuration of the landscape and coastal processes such as tides and waves is expected to largely influence the extent of propagule transport and subsequent regeneration. We hypothesized that landward sites would keep a stronger genetic structure over short distances in comparison with enhanced gene flow among regularly flooded seaward fringes. We tested this hypothesis from densely vegetated A. marina transects of a well-documented mangrove system (Gazi Bay, Kenya) and estimated local gene flow and kinship-based fine-scale genetic structure. Ten polymorphic microsatellite markers in 457 A. marina  trees revealed no overall significant difference in levels of allele or gene diversities between sites that differ in hydrological proximity. Genetic structure and connectivity of A. marina populations however indicated an overall effect of geographic distance and revealed a pronounced distinction between channels and topographic setting. Migration models allowed to infer gene flow directionality among channels, and indicated a bidirectional steppingstone between seaward and nearest located landward stands. Admixed gene pools without any fine-scale structure were found within the wider and more exposed Kidogoweni channel, suggesting open systems. Elevated kinship values and structure over 5 to 20 m distance were only detected in two distant landward and seaward transects near the mouth of the Mkurumunji river, indicating local retention and establishment. Overall, our findings show that patterns of A. marina connectivity are explained by hydrological proximity, channel network structure, and hydrokinetic energy, rather than just their positioning as disjunct land- ward or seaward zones.

Author Biography

Abbie Allela, Egerton University

PhD. Student


Alleman, L. K., & Hester, M. W. (2011). Reproductive ecology of black mangrove (Avicennia germinans) along the Louisiana coast: Propagule production cycles, dispersal limitations, and establishment eleva- tions. Estuaries and Coasts, 34, 1068–1077. s12237-011-9404-8

Balbar, A. C., & Metaxas, A. (2019). The current application of ecological connectivity in the design of marine protected areas. Global Ecology and Conservation, 17, e00569. e00569

Balke, T., Bouma, T. J., Horstman, E. M., Webb, E. L., Erftemeijer, P. L. A., & Herman, P. M. J. (2011). Windows of opportunity: Thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series, 440, 1–9.

Beerli, P. (2006). Comparison of Bayesian and maximum-likelihood infer- ence of population genetic parameters. Bioinformatics, 22, 341–345.

Beerli, P., & Palczewski, M. (2010). Unified framework to evaluate panmixia and migration direction among multiple sampling loca- tions. Genetics, 185, 313–326.


Binks, R. M., Byrne, M., McMahon, K., Pitt, G., Murray, K., & Evans, R.

D. (2018). Habitat discontinuities from strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Diversity and Distributions, 25, 298–309.

Carr, M. H., Robinson, S. P., Wahle, C., Davis, G., Kroll, S., Murray, S., Schumacker, E. J., & Williams, M. (2017). The central importance of ecological spatial connectivity to effective coastal marine pro- tected areas and to meeting the challenges of climate change in the marine environment. Aquatic Conservation, 27, 6–29. https://doi. org/10.1002/aqc.2800

Céron-Souza, I., Bermingham, E., McMillan, O. W., & Jones, F. A. (2012). Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama. BMC Evolutionary Biology, 12, 205.

Cerón-Souza, I., Gonzalez, E. G., Schwarzbach, A. E., Salas-Leiva, D. E., Rivera-Ocasio, E., Toro-Perea, N., Bermingham, E., & Mcmillan,

W. O. (2015). Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus. Ecology and Evolution, 5, 3486–3499. https://doi. org/10.1002/ece3.1569

Chablé Iuit, L. R., Machkour-M’Rabet, S., Espinoza-Ávalos, J., Hernández- Arana, H. A., López-Adame, H., & Hénaut, Y. (2020). Genetic struc- ture and connectivity of the red mangrove at different geographic scales through a complex transverse hydrological system from freshwater to marine ecosystems. Diversity, 12, 48. https://doi. org/10.3390/d12020048

Cisneros-de la Cruz, D. J., Martínez-Castillo, J., Herrera-Silveira, J., Yáñez-Espinosa, L., Ortiz-García, M., Us-Santamaria, R., & Andrade,

J. L. (2018). Short-distance barriers affect variability of Rhizophora mangle L. in the Yucatan Peninsula. Ecology and Evolution, 8, 11083–11099.

Clarke, P. J. (1992). Predispersal mortality and fecundity in the grey man- grove (Avicennia marina) in southeastern Australia. Australian Journal of Ecology, 17, 161–168. tb00794.x

Clarke, P. J., Kerrigan, R. A., & Westphal, C. J. (2001). Dispersal potential and early growth in 14 tropical mangroves: Do early life history traits correlate with patterns of adult distribution? Journal of Ecology, 89, 648–659.

Clarke, P. J., & Myerscough, P. J. (1991). Buoyancy of Avicennia marina propagules in South-Eastern Australia. Australian Journal of Botany, 39, 77–83.

Clough, B. F. (1984). Growth and salt balance of the mangroves Avicennia marina (Forsk.) Vierh. and Rhizophora stylosa Griff. in relation to salin- ity. Australian Journal of Plant Physiology, 11, 419–430.

Dahdouh-Guebas, F., De Bondt, R., Abeysinghe, P. D., Kairo, J. G., Cannicci, S., Triest, L., & Koedam, N. (2004). Comparative study of the disjunct zonation pattern of the grey mangrove Avicennia ma- rina (Forsk.) Vierh. in Gazi Bay (Kenya). Bulletin of Marine Science, 74, 237–252.

Dahdouh-Guebas, F., Verneirt, M., Tack, J. F., & Koedam, N. (1997). Food preferences of Neosarmatium meinerti de Man (Decapoda: Sesarminae) and its possible effect on the regeneration of man- groves. Hydrobiologia, 347, 83–89.

Dahdouh-Guebas, F., Verneirt, M., Tack, J. F., Van Speybroeck, D., & Koedam, N. (1998). Propagule predators in Kenyan mangroves and their possible effect on regeneration. Marine and Freshwater Research, 49, 345–350.

Davis, C. D., Epps, C. W., Flitcroft, R. L., & Banks, M. A. (2017). Refining and defining riverscape genetics: How rivers influence population genetic structure. Wires Water, 5, e1269.

De Campos, A. B., De Cedro, D. A. B., Tejerina-Garro, F. L., Bayer, M., & Carneiro, G. T. (2013). Spatial distribution of tropical wetlands in Central Brazil as influenced by geological and geomorphological set- tings. Journal of South American Earth Sciences, 46, 161–191. https://

De Ryck, D. J. R., Koedam, N., Van der Stocken, T., van der Ven, R. M., Adams, J., & Triest, L. (2016). Dispersal limitation of the mangrove Avicennia marina at its South African range limit in strong contrast to connectivity in its core East African region. Marine Ecology Progress Series, 545, 123–134.

Di Nitto, D., Dahdouh-Guebas, F., Kairo, J. G., Decleir, H., & Koedam, N. (2008). Digital terrain modelling to investigate the effects of sea level rise on mangrove propagule establishment. Marine Ecology Progress Series, 356, 175–188.

Dodd, R. S., Afzal-Rafii, Z., Kashani, N., & Budrick, J. (2002). Land barri- ers and open oceans: Effects on gene diversity and population struc- ture in Avicennia germinans L. (Avicenniaceae). Molecular Ecology, 11, 1327–1338.

Duke, N., Benzie, J. A. H., Goodall, J. A., & Ballment, E. R. (1998). Genetic structure and evolution of species in the mangrove genus Avicennia (Avicenniaceae) in the Indo-West Pacific. Evolution, 52, 1612–1626.

Earl, D. M., & von Holdt, B. M. (2012). STRUCTURE HARVESTER: A web-

site and program for visualizing STRUCTURE output and implement- ing the Evanno method. Conservation Genetic Resources, 4, 359–361.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the num- ber of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620. https://doi. org/10.1111/j.1365-294X.2005.02553.x

Finn, D. S., Blouin, M. S., & Lytle, D. A. (2007). Population ge- netic structure reveals terrestrial affinities for a headwater stream insect. Freshwater Biology, 52, 1881–1897. https://doi. org/10.1111/j.1365-2427.2007.01813.x

Finn, D. S., Theobald, D. M., Black, W. C., & Poff, N. L. (2006). Spatial genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Molecular Ecology, 15, 3553–3566.

Gallin, E., Coppejans, E., & Beeckman, H. (1989). The mangrove vegeta- tion of Gazi Bay (Kenya). Bulletin De La Société Royale De Botanique De Belgique, 122, 197–207.

Geng, Q. F., Lian, C. L., Tao, J. M., Li, S. Q., & Hogetsu, T. (2007). Isolation and characterization of 10 new compound microsatellite mark- ers for a mangrove tree species, Avicennia marina (Forsk.) Vierh. (Avicenniaceae). Molecular Ecology Notes, 7, 1208–1210. https://doi. org/10.1111/j.1471-8286.2007.01834.x

Goudet, J. (2001). FSTAT version 2.9.3: a program to estimate and test gene diversities and fixation indices (update from version 1.2 Goudet, 1995): a computer program to calculate F-statistic. Journal of Heredity, 86, 485–486.

Hardy, O. J., & Vekemans, X. (2002). SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618–620. https://doi. org/10.1046/j.1471-8286.2002.00305.x

Hemminga, M. A., Slim, F. J., Kazungu, J., Ganssen, G. M., Nieuwenhuize, J., & Kruyt, N. M. (1994). Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral reefs (Gazi Bay, Kenya). Marine Ecology Progress Series, 106, 291–301. meps106291



How to Cite

Allela, A. (2022) “Channel network structure determines genetic connectivity of landward–seaward Avicennia marina populations in a tropical bay”, Egerton University International Conference. Available at: (Accessed: 4 February 2023).



Innovations in Climate Change and Natural Resource Management